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ABSTRACT 

In view of the important nonlinear contributions to the renormalization group 

equations for the Yukawa coupling matrices, the naive application of unrenormal- 

ized models to low energy data is rather questionable. Here we investigate the 

renormalization effects for the specific case of the Fritzsch model. We show how 

the comparison with experimental data on the KM matrix elements and B - B 

mixing, in particular, is modified. 
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Most predictions for the structure of quark mass matrices have their origin in 
a hypothetical contact with an underlying model. It is the matching of degrees of 
freedom at a scale where this contact occurs that determines the structure. In many 
scenarios the typical scales of contact are very high, so that the renormalization of 
the ansatz becomes potentially important when compared with low energy data. 
If, however, all renormalization effects are universal in generation space, i.e., pro- 
portional to the unit matrix; then a universal resealing of the spectrum is the only 
effect. Since typically only the relative spectrum is explained by phenomenological 
mass matrices, this resealing can be absorbed and the unrenormaliaed ansatz can 
be used for the low energy spectrum and mixings. This universality in flavor space 
also guaranties that the Kobayashi-Maskawa mixing matrix [I] is not affected by 
renormalization. Once rotated in a certain basis, the ansatz will remain in this 
basis up to overall normalization factors. 

The picture changes when nonuniversal renormalization effects are present. The 
initial structure will start to change, since there is no symmetry within the standard 
model (or whatever extension is assumed) which protects it. The changes will in 
general be both physical and unphysical: part of the changes can be transformed 
away by righthanded rotations on the fields, but lefthanded rotations and relative 
changes in the spectrum of eigenvalues will be physically significant. 

We shall demonstrate here that changes in the KM mixing matrix show up 
earlier than changes in the relative spectrum. Two reasons for this are the high 
precision to which some KM matrix elements are known and the strong correlations 
in the changes of the elements. To be specific, we let the three generation standard 
model be valid up to a scale of lo5 GeV where a phenomenologicsl ansate of the 
Fritzsch type [Z] is assumed. Elsewhere [3] we shsll generalize the results to the 
2-Higgs and supersymmetric standard models. 

The renormalization group equations for the mass matrices are given by [4] 

( Gyl-Tyl--3S My, 
2Y > 

Y = U, D for up and down (1) 

where 

t=ln(&), My=?, u N 175 GeV 

Gu = 8s: + ;g; + ;g: 9 9, 52 Gg = 89: + ,sz + 1291 

Tu = To = 3 Trace (MUM& + MDM;) 

Su = -SD = MUM; - MDM; 

We can see immediately that the Gy and Ty terms are universal in generation 
space and result in universal resealing factors T which can be absorbed in a struc- 
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tural ansatz. The absolute magnitude of the spectrum will not be explained here; 
therefore, we can drop these factors +, since they do not change anything in the 
mixing matrix or relative spectrum. 

The evolution of the mixing angles has been solved in [4] to a very good ap- 
proximation for three generations in the original KM parametrization: 

f%(t) = e, +0(@) 

&3(t) = Bz,Jpl +0W) , (2) 
s(t) = 6 +0(@) 

where the bar always denotes quantities at p = 1 Gel’ ( t = 0 ) with 

Our numerical results will refer to lo5 GeV which puts ,!I in the range between 1.0 
and 1.25. Expanding ?YKM in small quantities we find 

t 

011 012 i&p; 

UKMP) = 021 r&,, - $7&3; - 1) u23d 

i 

(4) 

wt 62Pi r&s - ;D23(pi - 1) 

expressed in terms of Uij = (UKM)ij(O). Th e relative spectral changes can also be 
extracted from [4]: 

m,(l) = ?-~rn~ , m,(t) = f&T&C , q(t) = r,mtp a 

,,Ld(t) = T&id , m*(t) = T,j,?&, , m*(t) = T#ii&+ 
(5) 

The overall resealings rU and T,j will cancel later on as expected, and only rnb and 
mt get slightly changed in the relative spectrum by powers of p. The bar again 
denotes quantities defined et ~1 = 1 Gel’. 

Equations (4) and (5) allow us to discuss the matching of low energy data to a 
specific snsatz at a higher scale. A given set of low energy mssses and KM matrix 
elements (including errors) has to be transformed to the relevant scale by (4) and 
(5). All scale dependencies enter via p, e quantity which will aproach unity if the 
scale difference vanishes. Later on we will use masses evolved to the scale where 
a special anssts holds as input to find the predictions for the evolved KM matrix 
elements. 

We shah use the mixings determined at 1 GeV by Schubert [5] : 

.9506 - .9522 .04787 - .04946 

I~KM12 = 
(0 - 1.5138)10-4 

.04770 - .04937 .9483 - .9502 
(.0225 - 4.219)10-4 (.1498 - .2S15)10-2 

(.1600 - .2704)10-2 
.9972 - .9984 1 

(6) 
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Later on we shall find in lowest order that all mixings depend on just four indepen- 
dent mass ratios. From Ref. 6 we find for these ratios at 1 GeV: 

q* = 2 = 0.0039 f 0.0011, ‘23 = 2 < - 0.023 

;I2 = 2 = 
(7) 

0.051 f 0.004, ;23 zz 3 = 0.033 f 0.011 

Note that ratios of light quarks (u,d,s) are known rather precisely from current 
algebra, while ratios of heavy quarks (c,b,t) are also well determined. But ratios 
involving a light and a heavy quark, ~12 and C23, are known rather poorly. Hence 
they will later spoil rather precise predictions. 

For purposes of illustration we combine the above mass and mixing evolutions 
with the specific Fritzsch ansats [2] at a high symmetry-breaking scale, where the 
mass matrices assume the particularly simple form 

0 Ay eiQAy 0 
My = Ay e-‘QAY 0 By eiQBY 

0 Bye-“% CY 

with Ay ,BY, Cy E R+, and Y is again U for up quarks or D for down quarks. 
Due to the Sy terms in (l), the predictions will depend on the scale where the 
ansats is imposed. The product Myi@ is, in general, diagonalized by a unitary 
transformation Xy: 

XyMyMy+Xy+ = diag(m;,m;,m;) (9) 

Note that A1 = ml, A2 = -m2, A3 = m3 ( mi > 0 ) is used as usual for 
the eigenvalues of (8) to obtain [AlI < [A21 < /X31. The parameters A, B, C 
will be expressed in terms of masses ml, mu, ~712, via relations coming from the 
characteristic equation, because ultimately we want to use phenomenological masses 
as input to predict the KM mixings. Therefore Xy can be expressed entirely in 
terms of masses and free phases. We observe that the result for each Xy depends 
only on two independent quark mass ratios involving different generations, i.e., 2 

and 2, which are both small numbers. The exact results for the absolute squares 

of the KM matrix elements, as determined directly from U = XrXi or with the 
invariant function technique of Jarlskog [7], can therefore be expanded in terms of 
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these mass ratios, and we find in leading order 

1u’1112 N 1 - 2 z+$ - 2+2 7 COSiPA 

lh212 - % + 2 - 24755 COdA 

Ih312 = 2 ($ + - 2455 edg) 2 

F-J2112 = 2 + 2 - 2e COdA 

IU2212 ‘y l-~------+f(~COB~A+~=Od~B) 

lU2312 2 $+$-2 m CO&B 

lU3112 = 2 ( - 2a CO&) z+ 2 

lu32i2 = m CC&B 

~U3312 rr l- 2 - $ +2~dg 

(10) 
Given the numerical size of the epsilon mass ratios in (7), we observe that 

the second order terms are of the order of the errors of the data in (6). But the 
approximations in (10) are sufficient to give us a simple understanding of the al- 
lowed parameter space and, more importantly, enable us to see whether the leading 
contributions are renormalized and, if so, what changes occur. In a hypothetical 
expansion of IUKMI~ to sufficiently high precision, the changes due to renormal- 
ization would be given to a very good approximation by the alterations of the first 
terms affected by renormalization. So even if the expansion (10) is not sufficient 
for comparison with data, we can still extract the changes due to renormalization 
fairly accurately. A more detailed treatment of the renormalization effects will be 
treated elsewhere [3]. 

To understand the allowed parameter range, it is important to real&e that, of 
all the available information, the experimental bounds on ]U~Z]~ and IU3312 impose 
the strongest constraints on the Fritzsch model parameters. The two relations for 
lU4' and IU2312 in (10) have simple geometrical interpretations in terms of the 
two triangles shown in Fig. 1, where one side corresponds to the magnitude of a 
KM matrix element and the other two sides are just square roots of appropriate 
quark mass ratios. 
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Fig. 1. Triangles involving 1712 and U23. 

The triangle inequality for lU12j2 reads 

(/Z-/Z)2 I lU12121 (E+pJ2 (11) 
and since it involves just first and second generation quark masses, we see from (5) 
that it is invariant with respect to the renormalization effects in Srst order. The 
inequalities are satisfied for the Gasser-Leutwyler quark masses of Ref. 6, so we can 
solve for COS*A and find 

coa*,ll = 2 + 2 - lh212 

2dEe 

= Cl2 + 62 - 1~1212 
wzz 

PI 

at both the high symmetry-breaking scale and 1 GeV scale. Varying all input 
data give @A = 78’ + 3O, independent of the top quark mass. Comparison with 
numerical simulations for which +A = 84”f3O shows that the results are good, but 
not precise enough to compare with the experimental errors. The near cancellation 
in the numerator implies that second-order corrections should actually be taken 
into account here. 

The second relevant constraint comes from the triangle inequality for IU23j2. 
Again, when 

is fulfilled, we can solve for CO&B and find 

CO&B = 
2 + 2 - P2s12 P-li2e23 + pli2Z23 - IU2312 

(14) 

This time the solution will, if it etists, depend on the top mass; moreover, it is 
renormalization-dependent. Since 2 is much larger than IU2312, it is dear from 
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(14) and the left hand side of (13) that only for 2 N 2 can solutions exist and 

then only for @B small. For smzdl +B, we expect a stable result, so the first order 
terms should give fairly accurate results here. 

In Fig. 2a we use the geometrical construction of Fig. 1 to find the allowed 
parameter range of (14) with evolution ignored. In Fig. 2b the same data are 
plotted in the +B - mt plane which nicely reproduces the earlier results of Ref. 8. 
To include renormalization effects we just need to replace the masses and mixings 
by running quantities as in (14). All resealing factors T cancel as expected and only 
ratios of second and third generation quarks together with IV331 get corrected. 

The most important issue is the allowed range of top quark masses which is 
given in (14) for +B = 0 by 

E- $$= hlu23l 

or after inserting evolved masses 

(77&& = *c 

P (a* lP231P92 

(15) 

Note that these equations are selfconsistency equations since /3 is a function of 7~~1. 
We start using rfil = 0 for p on the right hand side and calculate a top mass which 
will be input for the next itteration until the result is reasonably stable. The lower 
end of the allowed range is more or less not changed by renormalization effects since 
p is very close to unity for such top mhsses. The upper end of the sllowed range is 
a balance of different corrections in (16). Since IU2312 < g most of the effect is 

given by the p-’ factor in (16) which reduces the upper end of the sllowed range 
by about 10% for a high scale of lo5 Gel’. 

Additional important experimental information constraining the top quark mass 
and restricting the validity of the Fritzsch model comes from the recent ARGUS 
results [9] on Bd - B,.J mixing. In the previous analysis of Ref. 8 which ignored non- 
linear renormalization effects, it wss found that the KM-allowed region for the top 
mass did not overlap the B - B mixing band as shown in Fig. 2b for the Fritssch 
ansats applied to the standard model. Hence it is of interest to see if inclusion of 
the nonlinear renormalization effects changes the situation. 

It is customary to approximate zd E Arng,-Br/r’B by the one-loop box dia- 
gram involving just W boson exchange in the standard model. As shown in [E], the 
equation of interest can be expressed as 

T~;IU~~U~*~I~R N (2.0 & 0.5) 
(0.140)2 

Bsf; 
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in terms of the ARGUS results. The parameter R is slowly varying and nearly 
renormalization-independent, while the running mass and the KM matrix elements 
should be evaluated near the W or 2 mass. The combination of interest which 
appears on the lefthand side of (17) is seen to evolve according to 

m;IU33U3*12 N ry774~3303*1~3 

which receives a scale-dependent correction of order p2, relative to the previous 
result which ignored nonlinear renormalization effects. Note that the ordinary QCD 
renormalization effects have been taken into account previously. We thus observe 
that the prediction of (16) indicates that (fit) -e for the ring in Fig. 2b is shifted 
downward by a factor of p-‘, while the B - B mixing band is shifted downward 
by the same factor according to (17) and (18). Hence the non-overlap of the KM 
annulus and B - B mixing band shown in Fig. 2b is not improved by taking the 
nonlinear renormalization effects into account. 

The research of C.H.A. was supported in part by Grant No. PHY-8704240 from 
the National Science Foundation. Fermilab is operated by Universities Research 
Association, Inc. under contract with the United States Department of Energy. 
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Fig. 2a. The geometric solution of the allowed range of top masses for the most 
interesting case where &3 = .022 is at the lower end of the allowed range, i.e., 
m, = 120MeV. The ring indicates the possible area for U23. Every triangle with 
the third upper point inside this area is a solution. The top quark mass is found 
by mapping the relevant side of the triangle on the horizontal axis, which is labeled 
with a top mass scale. The angle +B is read off directly. 

Fig. 2b. If the data of Fig. 2a are shown in a *B versus mr plot, the simple 
geometric interpretaion gets lost. The ring becomes asymmetric and deformed. 
Additionally, the allowed area from B - B mixing is shown. No overlap of the two 
areas occurs, and the question arises whether nonlinear renormalization effects will 
change this situation. 
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